Regulation of Low Density Lipoprotein Receptors

نویسندگان

  • Joseph L. Goldstein
  • David A. Chappell
چکیده

Membranes prepared from the adrenal gland of mice and rats possess high affinity binding sites that recognize '261-labeled human low density lipoprotein (LDL). These binding sites resemble the functional LDL receptors that mediate the uptake of LDL by cultured mouse and bovine adrenal cells. The number of LDL binding sites per mg of membrane protein increased 2to 5-fold over 24 h when mice or rats were treated with adrenocorticotropin (ACTH). In rats, this increase was accompanied by a similar ACTH-induced increase in the adrenal uptake of intravenously administered lZ6I-LDL, suggesting that the LDL binding sites mediate the uptake of LDL by the adrenal in the intact animal. The number of LDL binding sites on adrenal membranes rose by &fold when animals were rendered lipoproteindeficient, either by treatment of mice with 4-aminopyrazolopyrimidine or by treatment of rats with l7a-ethinyl estradiol. This increase was prevented when endogenous ACTH secretion was blocked by administration of dexamethasone, suggesting that ACTH was required. The current experiments suggest that LDL receptors provide one source of cholesterol for the mouse and rat adrenal in vivo and that the number of LDL receptors in this organ is regulated by ACTH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evalution of In Vitro Effect of Flavonoids on Human Low-Density Lipoprotein Carbamylation

The non-enzymatic carbamylation of low density lipoprotein (LDL) is a naturally occurring chemical modification of apolipoprotein B as a result of condensation between lysine residues and cyanate derived from urea. Carbamylated LDL is poorly recognized by LDL receptors and initiates different processes that can be considered proatherogenic. Thus, LDL carbamylation may contribute to the increase...

متن کامل

Evalution of In Vitro Effect of Flavonoids on Human Low-Density Lipoprotein Carbamylation

The non-enzymatic carbamylation of low density lipoprotein (LDL) is a naturally occurring chemical modification of apolipoprotein B as a result of condensation between lysine residues and cyanate derived from urea. Carbamylated LDL is poorly recognized by LDL receptors and initiates different processes that can be considered proatherogenic. Thus, LDL carbamylation may contribute to the increase...

متن کامل

Influence of Flavonols As in vitro on Low Density Lipoprotein Glycation

The non-enzymatic glycation of Low density lipoprotein (LDL) is a naturally occurring chemical modification of apolipoprotein B as a result of condensation between lysine residues and glucose. Glycated LDL is poorly recognized by LDL receptors and initiates different processes that can be considered proatherogenic. Thus, LDL glycation may contribute in the increased atherosclerotic risk of pati...

متن کامل

Familial Hypercholesterolemia in Iran: A Novel Frameshift Mutation in Low Density Lipoprotein Receptor (LDLR) Gene

  Background and Objective: Familial hypercholesterolemia (FH) is an autosomal trait, which is caused by mutations in Low Density Lipoprotein Receptor (LDLR) gene. FH penetrance is about 100% and worldwide prevalence for heterozygous subjects is almost 1 in 500 and for homozygous 1 in 1,000,000. The patients are at risk of premature coronary heart disease (CHD) due to defective LDLR a...

متن کامل

Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor.

PURPOSE OF REVIEW The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL and is an important therapeutic target for treating cardiovascular disease. Abundance of the LDLR is subject to both transcriptional and nontranscriptional control. Here, we highlight a new post-transcriptional mechanism for controlling LDLR function via ubiquitination of the ...

متن کامل

Lipoprotein metabolism in the fat Zucker rat: reduced basal expression but normal regulation of hepatic low density lipoprotein receptors.

Hyperlipoproteinemia is one of the phenotypic characteristics of the fat Zucker rat that carries a mutation in the leptin receptor gene. In the present study, we studied the regulation of hepatic low density lipoprotein (LDL) receptor expression in lean and fat Zucker rats. Compared with lean rats, the fat ones had a pronounced (approximately 60%) reduction in hepatic LDL receptor expression, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001